Avaliação de Oportunidades de Investimento no Mercado Futuro Brasileiro na Escala de Dezenas de Segundos

Nome: RAFAEL CORREIA NASCIMENTO
Tipo: Dissertação de mestrado acadêmico
Data de publicação: 20/03/2018
Orientador:

Nomeordem decrescente Papel
ALBERTO FERREIRA DE SOUZA Orientador

Banca:

Nomeordem decrescente Papel
ALBERTO FERREIRA DE SOUZA Orientador
CLAUDINE SANTOS BADUE Coorientador
PRISCILA MACHADO VIEIRA LIMA Examinador Externo
THIAGO OLIVEIRA DOS SANTOS Examinador Interno

Resumo: "A utilização de sistemas automáticos de investimentos na Bolsa de Valores brasileira (BM&FBovespa) vem crescendo a cada ano. Isso ocorre porque os sistemas automáticos de investimento, também chamados de robôs, são capazes de avaliar vários ativos financeiros simultaneamente e em escalas de tempo muito menores do que as de um investidor. Dessa forma, surge a necessidade de se criar algoritmos capazes de analisar grandes quantidades de dados em tempo real e de decidir acerca da melhor ação a ser tomada para um determinado ativo financeiro de interesse a cada instante.
Neste trabalho, foram avaliadas oportunidades de investimento no mercado futuro brasileiro (uma parte da BM&FBovespa) na escala de tempo de dezenas de segundos, usando um sistema automático de investimento baseado em preditores e considerando os custos de operação. Inicialmente, foi avaliado o limite superior de retorno que pode ser gerado por investimentos no mercado futuro usando um preditor perfeito, comumente chamado de oráculo. Em seguida, foram avaliados dois tipos de preditores neurais: um baseado em redes neurais Multilayer Perceptron (MLP) e o outro baseado em redes neurais sem peso VG-RAM. Os resultados mostraram que existem diariamente grandes oportunidades de investimento nas escalas de tempo analisadas, mas estas são difíceis de serem preditas usando as redes neurais consideradas. Isso ocorre porque as cotações dos ativos financeiros do mercado futuro têm comportamento muito próximo ao de séries random-walk. Contudo, usando mecanismos de decisão baseados no desempenho recente dos preditores, é possível melhorar a qualidade das decisões de compra e venda e se beneficiar de momentos em que as séries de cotações dos ativos são mais previsíveis.
"

Acesso ao documento

Acesso à informação
Transparência Pública

© 2013 Universidade Federal do Espírito Santo. Todos os direitos reservados.
Av. Fernando Ferrari, 514 - Goiabeiras, Vitória - ES | CEP 29075-910