Medida de Certeza na Categorização Multi-Rótulo de Texto e sua Utilização como Estratégia de Poda de Ranking de Categorias

Nome: Caribe Zampirolli de Souza
Tipo: Dissertação de mestrado acadêmico
Data de publicação: 27/08/2010
Orientador:

Nomeordem decrescente Papel
Claudine Santos Badue Gonçalves Orientador

Banca:

Nomeordem decrescente Papel
Alberto Ferreira De Souza Coorientador
Claudine Santos Badue Gonçalves Orientador
Elias Silva de Oliveira Examinador Interno
Wagner Meira Júnior Examinador Externo

Resumo: Dado um documento de entrada, um sistema de categorização multi-rótulo de texto tipicamente computa graus de crença para as categorias de um conjunto prédefinido, ordena as categorias por grau de crença, e atribui ao documento as categorias com grau de crença superior a um determinado limiar de poda. Idealmente, o grau de
crença deveria informar a probabilidade do documento de fato pertencer à categoria. Infelizmente, ainda não existem categorizadores que computam tais probabilidades e mapear graus de crença em probabilidades é um problema ainda pouco explorado na área de RI.
Neste trabalho, propomos um método baseado na regra de Bayes para mapear graus de crença em medidas de certeza de categorização multi-rótulo de texto. Propomos também uma estratégia para determinar limiares de poda baseada na medida de certeza de categorização - bayesian cut (BCut) - e uma variante para BCut - position
based bayesian CUT (PBCut). Avaliamos experimentalmente o impacto dos métodos propostos no desempenho de duas técnicas de categorização multi-rótulo de texto, kvizinhos mais próximos multi-rótulo (ML-kNN) e rede neural sem peso do tipo VGRAM
com correlação de dados (VG-RAM WNN-COR), no contexto da categorização de descrições de atividades econômicas de empresas brasileiras segundo a Classificação Nacional de Atividades Econômicas (CNAE). Investigamos também o impacto no desempenho de categorização multi-rótulo de texto de três métodos de poda comumente usados na literatura de RI - RCut, PCut, e SCut e uma variante de RCut - RTCut. Além disso, propomos novas variantes para PCut e SCut PCut* e SCut*, respectivamente para tratar problemas existentes nestas abordagens. Nossos resultados
experimentais mostram que, usando nosso método de geração de medidas de certeza de categorização, é possível prever o quão certo está o categorizador de que as categorias por ele preditas são de fato pertinentes para um dado documento. Nossos resultados
mostram também que o uso de nossas estratégias de poda BCut e PBCut produz desempenho de categorização superior ao de todas as outras estratégias consideradas em termos de precisão.

Acesso ao documento

Acesso à informação
Transparência Pública

© 2013 Universidade Federal do Espírito Santo. Todos os direitos reservados.
Av. Fernando Ferrari, 514 - Goiabeiras, Vitória - ES | CEP 29075-910