Precondicionador multigrid algébrico para
métodos iterativos não estacionários na solução
de sistemas lineares de grande porte

Nome: Henrique Gomes de Jesus
Tipo: Dissertação de mestrado acadêmico
Data de publicação: 05/03/2021
Orientador:

Nomeordem decrescente Papel
Lucia Catabriga Orientador
Maria Claudia Silva Boeres Co-orientador

Banca:

Nomeordem decrescente Papel
Adriano Maurício de Almeida Côrtes Examinador Externo
Isaac Pinheiro dos Santos Examinador Interno
Lucia Catabriga Orientador
Maria Claudia Silva Boeres Coorientador

Resumo: O objetivo deste trabalho é avaliar o desempenho computacional do Multigrid Algébrico
(AMG) como precondicionador de métodos baseados em subespaços de Krylov.
Foi implementada uma estratégia de engrossamento alternativa conhecida por Double
Pairwise Aggregation (DPA) que aplica um algoritmo de matching em grafos duas vezes
em cada nível da hierarquia a fim de produzir os operadores de restrição e interpolação.
Neste contexto, matrizes de origens diversas foram utilizadas para comparar as
diferentes estratégias de engrossamento do AMG entre si e com precondicionadores
derivados da fatoração LU incompleta (ILU) e da fatoração Gauss-Seidel aplicados
ao Método do Resíduo Mínimo Generalizado (GMRES). Experimentos computacionais
adicionais são realizados com matrizes tipo estêncil e com matrizes oriundas de
problemas regidos pelas equações de Euler discretizadas pelo método dos Elementos
Finitos, onde a aplicação de um algoritmo de reordenamento de linhas e colunas
também é levado em consideração. Por fim, são apontadas vantagens e desvantagens
em cada método e algoritmo de engrossamento em cada contexto, com ênfase nos
avanços obtidos com a implementação do DPA.
Palavras-chave: Métodos Multigrid. Multigrid Algébrico. Double Pairwise Aggregation.
Precondicionadores. Métodos Iterativos

Acesso ao documento

Acesso à informação
Transparência Pública

© 2013 Universidade Federal do Espírito Santo. Todos os direitos reservados.
Av. Fernando Ferrari, 514 - Goiabeiras, Vitória - ES | CEP 29075-910