O conteúdo desse portal pode ser acessível em Libras usando o VLibras

Name: GABRIEL DOS SANTOS SERENO

Publication date: 11/07/2024

Examining board:

Namesort descending Role
CELSO JOSE MUNARO Presidente
FRANCISCO DE ASSIS BOLDT Examinador Externo
LUIZ AFFONSO HENDERSON GUEDES DE OLIVEIRA Examinador Externo
THOMAS WALTER RAUBER Coorientador

Summary: In this study, specialized Random Forest classifiers are trained using the SHAP feature selection method to identify faults in industrial processes. The classifiers receive input data from the decomposition of the multiclass problem using the One-vs-All technique. This methodology was applied to two benchmarks: the Tennessee Eastman Process and the Continuous Stirred Tank Reactor. The SHAP method achieved a performance of approximately 89% in the F1-score metric for the Tennessee Eastman Process, selecting around four features on average per fault. For the Continuous Stirred Tank Reactor, the algorithm achieved 90% in the F1-score metric and selected about three features on average per fault. The study showed that the Recursive Feature Elimination (RFE) method obtained similar results compared to SHAP in both benchmarks. However, the RFE method tends to select more features to achieve the same performance. Finally, the study suggests that SHAP can reduce the dimensionality of the dataset while maintaining good performance in the F1-score metric.

Access to document

Acesso à informação
Transparência Pública

© 2013 Universidade Federal do Espírito Santo. Todos os direitos reservados.
Av. Fernando Ferrari, 514 - Goiabeiras, Vitória - ES | CEP 29075-910

Conteúdo acessível em Libras usando o VLibras Widget com opções dos Avatares Ícaro, Hosana ou Guga. Conteúdo acessível em Libras usando o VLibras Widget com opções dos Avatares Ícaro, Hosana ou Guga.