
Ciclo de Palestras em Computação
UFES - 2022

Ivan De Oliveira Nunes
Rochester Institute of Technology

http://ivan.csec.rit.edu

1

http://sites.uci.edu/ionunes/

Agenda

1. Minha trajetória desde a UFES (2009)

2. Dicas e conselhos gratuitos (se fosse bom vendia)

- Ou: “existe vida após a graduação na UFES?”

3. Oportunidades para alunos da UFES no RIT

4. Um pouco do minha pesquisa: IoT & MCU Security

2

3

De volta a 2009…

2008/2009

4

2008/2009

5

Passei no vestibular!
Agora to de boa!

2008/2009

6

Passei no vestibular!
Agora to de boa!

6 meses depois

Outros “inocentes” 2009 -> 2022

7

Outros “inocentes” 2009 -> 2022

8

Prof. Andre Pacheco
(DI - UFES)

Outros “inocentes” 2009 -> 2022

9

Outros “inocentes” 2009 -> 2022

10

Marcos Couto
(Android Developer - PicPay)

Outros “inocentes” 2009 -> 2022

11

Marcos Couto
(Android Developer - PicPay)

Outros “inocentes” 2009 -> 2022

12

Outros “inocentes” 2009 -> 2022

13

Outros “inocentes” 2009 -> 2022

14

Juan Franca
1º Tenente da Marinha do Brasil

Turma Eng. Comp. 2009

Se nós sobrevivemos, você também consegue!!!

Frases que ouço hoje dos meus colegas de turma que
eu gostaria de ter ouvido quando era aluno

16

Conselhos gratuitos

17

1. “Todo mundo sobreviveu”:

Conselhos gratuitos

18

1. “Todo mundo sobreviveu”:
- Obs: saúde (física e mental) em 1º lugar.
- Todos bem (pessoalmente e profissionalmente)!
- Não desista: forme-se! Vale a pena. 

Conselhos gratuitos

19

1. “Todo mundo sobreviveu”:
- Obs: saúde (física e mental) em 1º lugar.
- Todos bem (pessoalmente e profissionalmente)!
- Não desista: forme-se! Vale a pena. 

2. “O tempo passa pra todo mundo”:

Conselhos gratuitos

20

1. “Todo mundo sobreviveu”:
- Obs: saúde (física e mental) em 1º lugar.
- Todos bem (pessoalmente e profissionalmente)!
- Não desista: forme-se! Vale a pena. 

2. “O tempo passa pra todo mundo”:
- Aproveite as oportunidades durante a graduação.

Exemplo: atividades durante a minha graduação
(e as portas que elas abriram)

21

Exemplo: atividades durante a minha graduação
(e as portas que elas abriram)

22

• PET Eng Comp (2009 - 2012):

Exemplo: atividades durante a minha graduação
(e as portas que elas abriram)

23

• Torneios de Robótica (2010, 2012, 2013, 2014)
• ERUS (criada em 2012)

Exemplo: atividades durante a minha graduação
(e as portas que elas abriram)

24

• Ensino, Pesquisa e ICs

Exemplo: atividades durante a minha graduação
(e as portas que elas abriram)

25

• NOTA: como aluno da UFES você pode fazer a diferença e impactar a
universidade e a sociedade

Exemplo: atividades durante a minha graduação
(e as portas que elas abriram)

26

• NOTA: como aluno da UFES você pode fazer a diferença e impactar a
universidade e a sociedade

• Exemplos de projetos idealizados por alunos e executados com apoio de
professores do DI/DEL (da minha epoca de UFES):

• IntroComp

• Nucleo de Cidadania Digital (NCD)

• Equipe de Robotica da UFES (ERUS)
• TRUFES

Conselhos gratuitos

27

1. “Todo mundo sobreviveu”:
- Obs: Saúde (física e mental) em 1º lugar.
- Todos bem!
- Não desista: forme-se! Vale a pena. 

2. “O tempo passa pra todo mundo”:
- Aproveite as oportunidades durante a graduação.

Conselhos gratuitos

28

1. “Todo mundo sobreviveu”:
- Obs: Saúde (física e mental) em 1º lugar.
- Todos bem!
- Não desista: forme-se! Vale a pena. 

2. “O tempo passa pra todo mundo”:
- Aproveite as oportunidades durante a graduação.

3. “Nunca fiz nada tão difícil quanto me formar na UFES”:
- Existe vida após a graduação.
- Depois de formar a vida fica bem mais fácil.

Conselhos gratuitos

29

1. “Todo mundo sobreviveu”:
- Obs: Saúde (física e mental) em 1º lugar.
- Todos bem!
- Não desista: forme-se! Vale a pena. 

2. “O tempo passa pra todo mundo”:
- Aproveite as oportunidades durante a graduação.

3. “Nunca fiz nada tão difícil quanto me formar na UFES”:
- Existe vida após a graduação.
- Depois de formar a vida fica bem mais fácil.

4. “Se eu não tivesse amigo, eu não tinha formado”:

Conselhos gratuitos

30

1. “Todo mundo sobreviveu”:
- Obs: Saúde (física e mental) em 1º lugar.
- Todos bem!
- Não desista: forme-se! Vale a pena. 

2. “O tempo passa pra todo mundo”:
- Aproveite as oportunidades durante a graduação.

3. “Nunca fiz nada tão difícil quanto me formar na UFES”:
- Existe vida após a graduação.
- Depois de formar a vida fica bem mais fácil.

4. “Se eu não tivesse amigo, eu não tinha formado”:
- Faça amigos: sua rede de conexões profissionais começa agora, na UFES.
- Meus colegas de UFES sao amigos que eu levo para a vida inteira.

“Se eu não tivesse amigo, eu não tinha formado”

31

Depois da UFES

32

• Mestrado na UFMG (2014-2016)

• Doutorado – University of California Irvine (2016-2021)

• Atualmente:
• Professor – Rochester Institute of Technology (RIT)

Parte 2: Oportunidades no RIT

33

ABOUT RIT

Our Story
● Private University
● Founded in 1829
● 10th largest private university in the U.S.
● 9 colleges, 18+ research centers
● 50+ MOU’s and Partnerships.
● Campuses in Rochester, Croatia, Dubai

& Kosovo

Student Body
● 19,000+ students

○ 15,900 undergraduate
○ 3,100 graduate
○ ~15% international students

● 118,000+ alumni

ABOUT ROCHESTER

Buffalo = 1 hour

Niagara Falls = 1.5 hours

Toronto, Canada = 3 hours

New York City = 1 hour

Boston = 1.5 hours

Chicago = 1.5 hours

1.1M
total population

3rd largest city in
New York State

Global Cybersecurity Institute (GCI)
Cybersecurity is a wholistic outcome and is a multidisciplinary activity

Image courtesy Wipro
https://www.wipro.com/en-US/applications/eliminating-the-
complexity-in-cybersecurity-with-artificial-intelligence/

• Computing Security is a core technical discipline but
successful outcomes demands integration and collaboration
across a broad range of disciplines

• Software engineering, computer science, HCI, gaming,
business, cognitive psychology, public policy, mathematics,
quantum computing etc.

Capitalize on existing strengths in education, research
and outreach/impact by taking them to the next level
with focus and intensity

• 500 students, leader in Collegiate Cyber Competitions
• $3M in yearly research grants & growing
• Eaton SAFE lab for penetration testing

GCI – Cybersecurity as a Global Endeavor
Goals: Experience, Expertise, Facility, & Opportunity.
Countries with Partner Institutions: United Kingdom, Czech Republic, Poland, Ireland, Netherlands, Italy,
France, Germany, Ukraine, Taiwan, India, South Korea, Uruguay, Mexico, Brazil, and counting.
Activities:
▪ CyberVSR: Visiting students conducting research with GCI faculty in a culturally diverse environment.

https://www.rit.edu/cybersecurity/cybervsr

GCI – Cybersecurity as a Global Endeavor
Goals: Experience, Expertise, Facility, & Opportunity.
Countries with Partner Institutions: United Kingdom, Czech Republic, Poland, Ireland, Netherlands, Italy,
France, Germany, Ukraine, Taiwan, India, South Korea, Uruguay, Mexico, Brazil, and counting.
Activities:
▪ CyberVSR: Visiting students conducting research with GCI faculty in a culturally diverse environment.

▪ Joint student supervision: undergraduate and graduate.
▪ Collaborative grants: CSIT @ Queen’s University Belfast

(UK), Poznan University of Technology / EUNICE (Poland),
KPI University (Ukraine), & Gachon University (S. Korea).

▪ Joint webinars and workshops:
- US-NI-RoI Workshop on IoT/CPS Cybersecurity
- NATO AICA Conference

▪ CPTC International: RIT Dubai (Middle East), SiberX &
Durham College (Canada), & Masaryk University (Europe).

▪ Collaborative Training/Education: ... in the works,

Global Cybersecurity Institute Virtual Tour
https://youtu.be/XdnRwwxcR7Y

https://youtu.be/XdnRwwxcR7Y

A Global Digital Nervous System
The New World We Live In

Connected everywhere

Greater access,
but less control

New technologies =
new vulnerabilities

The physical is digital and computers make autonomous decisions

The Old Model of Security

Perimeter-based

A single layer or simply
add more layers

Static, inflexible

Can we create a cyber immune system?

Assume constant attack

Innate detection and defenses

Both atomic and wholistic

Highly adaptive

Barriers: Skin and cilia prevent invaders
from entering

Innate: Fever, chemicals stop invaders
from spreading

Adaptive: White blood cells attack
invaders

The Immune System Metaphor

Barriers: Stopping Airborne Attacks
Wireless Security

• Full-frame Encryption
• Physical-layer attributes

Hanif Rahbari

Robust & Secure System-on-a-Chip
• Jamming protection
• Eavesdropping protection

Amlan Ganguly

Innate: Security by Design

Combatting Architectural Weaknesses
• Finding & characterizing design flaws
• Working w/ MITRE’s CWE Mehdi Mirakhorli

Metrics for Software Vulnerabilities
• Understanding how they happen
• Better software patterns

Andy Meneely

Adaptive: Robust Detection

Attack Prediction & Modeling
• ML to extract adversary behavior
• Predictive modeling of attacks S. Jay Yang

Adversarial ML
• More secure ML
• Deepfake detection Matt Wright

Encrypted Cloud
• Homomorphic Encryption
• Secure Analytics

Adaptive Barriers: Cryptography

Privacy in Smart Meters
• Protect your activities
• Accurate, real-time data to providers

Peizhao Hu

+ Sumita Mishra

Protecting our Digital System

Cybersecurity Research @ GCI

Intelligent and adaptive

Both atomic and wholistic

Providing innate protection

Ph.D. – Computing & Information Sciences

Ph.D. – Computing & Information Sciences

Ph.D. – Computing & Information Sciences

Parte 3:

Um pouco sobre a minha pesquisa

IoT Device Security

51

What is an IoT device?

Loosely specified:

“It’s a thing” ...

AND

“It’s in the Internet (i.e., can communicate)” ...

=>
“It’s an IoT Device!”

Not wrong, but too broad => Not very useful as a definition.

52

What is an IoT device?
Our context:

IoT devices have limitations when compared to your everyday general purpose devices.

(In our context) the following general purpose computers are *not considered* “IoT

Devices”:

53

Wide range of Specialized Embedded Devices

54

Wide range of Specialized Embedded Devices

55

Usually implemented using Micro-Controller Units (MCUs)

Micro-Controller Unit (MCU)

56

TI MSP430

Micro-Controller Unit (MCU)

57

TI MSP430

Micro-Controller Unit (MCU)

58

IoT & MCU Security
(why bother?)

59

IoT Applications

● Multitudes of interconnected devices
○ Control units
○ Sensors
○ Actuators
○ Network devices

● Examples
○ Industrial/office automation
○ Home automation
○ Vehicles

● Heterogeneous:
Typically, more sophisticated devices
control simpler lower-end ones

60

Safety Critical Embedded/Cyber-physical/IoT Systems

Controller
(Higher-end device) Sensor

(Low-end device)

● Examples
○ Smoke detector in a household
○ Engine temperature sensor in a car

Controllers rely on sensed values to make decisions
(e.g., send help)

61

Controller
(Higher-end device) Sensor

(Low-end device)

All good.

● Examples
○ Smoke detector in a household
○ Engine temperature sensor in a car

Controllers rely on sensed values to make decisions
(e.g., send help)

62

Safety Critical Embedded/Cyber-physical/IoT Systems

Controller
(Higher-end device) Sensor

(Low-end device)

● Examples
○ Smoke detector in a household
○ Engine temperature sensor in a car

Controllers rely on sensed values to make decisions
(e.g., send help)

63

Safety Critical Embedded/Cyber-physical/IoT Systems

Controller
(Higher-end device) Sensor

(Low-end device)

Fire!!!

● Examples
○ Smoke detector in a household
○ Engine temperature sensor in a car

Controllers rely on sensed values to make decisions
(e.g., send help)

64

Safety Critical Embedded/Cyber-physical/IoT Systems

Controller
(Higher-end device) Sensor

(Low-end device)
Infected
Sensor

● Examples
○ Smoke detector in a household
○ Engine temperature sensor in a car

Problem: compromised software on the low-end
sensor device might spoof sensed values

65

Safety Critical Embedded/Cyber-physical/IoT Systems

Controller
(Higher-end device) Sensor

(Low-end device)
Infected
Sensor

● Examples
○ Smoke detector in a household
○ Engine temperature sensor in a car

Problem: compromised software on the low-end
sensor device might spoof sensed values

66

Safety Critical Embedded/Cyber-physical/IoT Systems

● Examples
○ Smoke detector in a household
○ Engine temperature sensor in a car

Problem: compromised software on the low-end
sensor device might spoof sensed values

Controller
(Higher-end device) Sensor

(Low-end device)
Infected
Sensor

All good.

67

Safety Critical Embedded/Cyber-physical/IoT Systems

● Other examples:

- Implantable (battery powered) medical devices

- Enviromental/chemical sensors in the rainforest (or underwater)

- Energy meter or a household (for billing purposes and more)

68

Safety Critical Embedded/Cyber-physical/IoT Systems

IoT Attacks in the Wild

69

IoT-Specific Threats and Attacker Goals

● Sensors: Privacy

● Actuators: Security/Safety (e.g.,
Stuxnet)

● Either: DDoS, a.k.a., Zombification
(e.g., Mirai)

And combinations thereof...

70

MCU Computational Resources
(The amoebas of the computing world)

● Designed for: Low-Cost, Low-Energy, Small-Size.
● Memory: Program (32 to 64kB) and Data (2 to 16 kB)
● Single core CPU (1 to 16MHz; 8 or 16 bits)
● Simple Communication Interfaces for IO (a Few kbps)
● Examples: TI MSP430, AVR ATMega32 (Arduino)

71

Other IoT Security Issues & Challenges

● Default PINs/Passwords (MIRAI BotNet)

72

Other IoT Security Issues & Challenges

● Default PINs/Passwords (MIRAI BotNet)
● Hard to access and deployed in large numbers (Sensor Networks, PLC

networks)
○ may require remote operation and verification

73

Other IoT Security Issues & Challenges

● Default PINs/Passwords (MIRAI BotNet)
● Hard to access and deployed in large numbers (Sensor Networks, PLC

networks)
○ may require remote operation and verification

● Buggy software:
○ often written in very efficient, but unsafe languages (usually C or Assembly)
○ Why?

74

Other IoT Security Issues & Challenges

● Default PINs/Passwords (MIRAI BotNet)
● Hard to access and deployed in large numbers (Sensor Networks, PLC

networks)
○ may require remote operation and verification

● Buggy software:
○ often written in very efficient, but unsafe languages (usually C or Assembly)
○ Why?

● Inadequate Hardware/Architectural support for security:

75

Other IoT Security Issues & Challenges

● Default PINs/Passwords (MIRAI BotNet)
● Hard to access and deployed in large numbers (Sensor Networks, PLC

networks)
○ may require remote operation and verification

● Buggy software:
○ often written in very efficient, but unsafe languages (usually C or Assembly)
○ Why?

● Inadequate Hardware/Architectural support for security:
○ Somewhat low-end, e.g., ARM Cortex M/R processors:

■ primitive security support (MPU, but no MMU)
○ Lowest-end/ultra low-energy, e.g, AtMega, MSP430, etc:

■ no security support
○ It’s a budgetary issue!

76

Some Open Questions and Research Problems

How to remotely assure that an MCU:

● is currently loaded with the expected software?
● Code integrity

77

Some Open Questions and Research Problems

How to remotely assure that an MCU:

● is currently loaded with the expected software?
● Code integrity

● is guaranteed to executed an expected function/operation?
● won’t ignore commands?

● Safety-critical actuation, software update, etc...
● Availability

78

Some Open Questions and Research Problems

How to remotely assure that an MCU:

● is currently loaded with the expected software?
● Code integrity

● is guaranteed to executed an expected function/operation?
● won’t ignore commands?

● Safety-critical actuation, software update, etc...
● Availability

● produced some data through the proper execution of the expected operation?
○ e.g., a sensing task
○ Execution integrity

79

Some Open Questions and Research Problems

How to remotely assure that an MCU:

● is currently loaded with the expected software?
● Code integrity

● is guaranteed to executed an expected function/operation?
● won’t ignore commands?

● Safety-critical actuation, software update, etc...
● Availability

● produced some data through the proper execution of the expected operation?
○ e.g., a sensing task
○ Execution integrity

● won’t spy on you or leak your data?
● Confidentiality/Privacy

● and so on...

80

Some Open Questions and Research Problems

How to remotely assure that an MCU:

● is currently loaded with the expected software?
● Code integrity

● is guaranteed to executed an expected function/operation?
● won’t ignore commands?

● Safety-critical actuation, software update, etc...
● Availability

● produced some data through the proper execution of the expected operation?
○ e.g., a sensing task
○ Execution integrity

● won’t spy on you or leak your data?
● Confidentiality/Privacy

● and so on...
Bonus challenge:
Make all of that secure (provably so) and affordable
enough to run in a resource-constrained amoeba!

81

Some Open Questions and Research Problems

How to remotely assure that an MCU:

● is currently loaded with the expected software?
● Code integrity

● is guaranteed to executed an expected function/operation?
● won’t ignore commands?

● Safety-critical actuation, software update, etc...
● Availability

● produced some data through the proper execution of the expected operation?
○ e.g., a sensing task
○ Execution integrity

● won’t spy on you or leak your data?
● Confidentiality/Privacy

● and so on...
Bonus challenge:
Make all of that secure (provably so) and affordable
enough to run in a resource-constrained amoeba!

82

For today, let’s focus on this one!

Software Integrity in IoT Devices

83

The Most Fundamental Question

• Without it nothing else

makes sense:

84

CPU B
U
S

C
o
n
t
r
o
ll
e
r

R
A
M

F
L
A
S
H

Registers

The Most Fundamental Question

• Without it nothing else

makes sense:

• Is my IoT device

currently installed with

the correct/expected

code?

85

CPU B
U
S

C
o
n
t
r
o
ll
e
r

R
A
M

F
L
A
S
H

Registers

Threat Model
• What can the adversary do?

86

Threat Model
• What can the adversary do?

• Access the device and re-program FLASH without the

owner’s knowledge or permission

87

Threat Model
• What can the adversary do?

• Access the device and re-program FLASH without the

owner’s knowledge or permission

• Replace SD Card with pre-loaded malicious code

88

Threat Model
• What can the adversary do?

• Access the device and re-program FLASH without the

owner’s knowledge or permission

• Replace SD Card with pre-loaded malicious code

• Example: Automated Insulin Pump

• Change the FLASH code to never inject insulin

• Change the FLASH code to overdose the user

89

Threat Model
• What can the adversary do?

• Access the device and re-program FLASH without the

owner’s knowledge or permission

• Replace SD Card with pre-loaded malicious code

• Example: Automated Insulin Pump

• Change the FLASH code to never inject insulin

• Change the FLASH code to overdose the user

90

Anything modifiable can be modified by the Adversary. Hardware is not modifiable!

A.k.a.: Full-Software Compromise model!

One of the strongest threat models (and very applicable to IoT)

91

CPU B
U
S

C
o
n
t
r
o
ll
e
r

R
A
M

F
L
A
S
H

Registers

Secure Boot

Secure Boot

92

CPU B
U
S

C
o
n
t
r
o
ll
e
r

R
A
M

F
L
A
S
H

Registers

Executable

Malicious Software
Modification

Secure Boot

93

CPU B
U
S

C
o
n
t
r
o
ll
e
r

R
A
M

F
L
A
S
H
R
O
M

Registers

• A simple idea:
• Cryptographic Hash Functions

• Store a hash of the Original in
Read-Only Memory (ROM)

• At boot: compute a hash of the
executable and compare with the
stored hash in ROM

• Why does it work?

Executable

H(Original)

Secure Boot (history)
[IEEE S&P (Oakland) 1997]

94

Secure Boot ++

95

• Secure boot: guarantees that only authorized software boots

Secure Boot ++

96

• Secure boot: guarantees that only authorized software boots

• Runtime Program Memory Immutability: The authorized booted

software can not be modified at runtime

• Data Execution Prevention: Unauthorized software may be injected

into Data Memory… but it can never execute.

Secure Boot ++

97

• Secure boot: guarantees that only authorized software boots

• Runtime Program Memory Immutability: The authorized booted

software can not be modified at runtime

• Data Execution Prevention: Unauthorized software may be injected

into Data Memory… but it can never execute.

Are we done?
Did we solve MCU software integrity the problem?
Any issues remain?

Secure Boot ++

• Remote Software Updates:

• Send the new software to the MCU (over the network)
• New software must be received by an update function

implemented as MCU software.
• Update function overwrites program memory with the

newly received software.

98

Secure Boot ++

• Remote Software Updates:

• Send the new software to the MCU (over the network)
• New software must be received by an update function

implemented as MCU software.
• Update function overwrites program memory with the

newly received software.

99

Oops… We just killed remote software updates…

Secure Boot ++

• Remote Software Updates:

• Send the new software to the MCU (over the network)
• New software must be received by an update function

implemented as MCU software.
• Update function overwrites program memory with the

newly received software.

100

Oops… We just killed remote software updates…

Who cares?

Remote Software Updates
• These guys probably care:

101

MCU Software Integrity:
Prevention vs. Detection

• Bottom-line:

• Preventing malicious software modifications is hard!
• Possible… but often too limiting…

102

MCU Software Integrity:
Prevention vs. Detection

• Bottom-line:

• Preventing malicious software modifications is hard!
• Possible… but often too limiting…

• An alternative approach.
• Detection-based integrity

103

Allow software to change (for the good or for the bad)…
But always check/measure the software before using it!

Detection of Illegal IoT Code Modifications
and
Remote Attestation

104

Remote Attestation (RA)
• General interaction between Verifier and Prover:

105

(1) Challenge:
What software are you

running?

Verifier Prover

Remote Attestation (RA)
• General interaction between Verifier and Prover:

106

(1) Challenge:
What software are you

running? (2) Generate a proof =
authenticated challenge-based
measurement of its own PMEM
(via some cryptographic integrity-
ensuring function)

Verifier Prover

Remote Attestation (RA)
• General interaction between Verifier and Prover:

107

(1) Challenge:
What software are you

running?

(3) Response:
I’m running software X.

Here is a proof!

(2) Generate a proof =
authenticated challenge-based
measurement of its own PMEM
(via some cryptographic integrity-
ensuring function)

Verifier Prover

Remote Attestation (RA)
• General interaction between Verifier and Prover:

108

(1) Challenge:
What software are you

running?

(3) Response:
I’m running software X.

Here is a proof!(4) Verify response,
decide if Prover

should be trusted

(2) Generate a proof =
authenticated challenge-based
measurement of its own PMEM
(via some cryptographic integrity-
ensuring function)

Verifier Prover

Remote Attestation (RA)
• General interaction between Verifier and Prover:

109

(1) Challenge:
What software are you

running?

(3) Response:
I’m running software X.

Here is a proof!(4) Verify response,
decide if Prover

should be trusted

Adversary May Have
Full Control of Prover’s
Software State

(2) Generate a proof =
authenticated challenge-based
measurement of its own PMEM
(via some cryptographic integrity-
ensuring function)

Verifier Prover

Remote Attestation (RA)
• General interaction between Verifier and Prover:

110

(1) Challenge:
What software are you

running?

(3) Response:
I’m running software X.

Here is a proof!(4) Verify response,
decide if Prover

should be trusted

Adversary May Have
Full Control of Prover’s
Software State

(2) Generate a proof =
authenticated challenge-based
measurement of its own PMEM
(via some cryptographic integrity-
ensuring function)

Verifier Prover

Why is a secret required for this interrogation?

Remote Attestation (RA)
• General interaction between Verifier and Prover:

111

(1) Challenge:
What software are you

running?

(3) Response:
I’m running software X.

Here is a proof!(4) Verify response,
decide if Prover

should be trusted

Adversary May Have
Full Control of Prover’s
Software State

(2) Generate a proof =
authenticated challenge-
based measurement of its own
PMEM (via some cryptographic
integrity-ensuring function)

Verifier Prover

Why is a secret required for this interrogation?

Remote Attestation (RA)
• General interaction between Verifier and Prover:

112

(1) Challenge:
What software are you

running?

(3) Response:
I’m running software X.

Here is a proof!(4) Verify response,
decide if Prover

should be trusted

Adversary May Have
Full Control of Prover’s
Software State

(2) Generate a proof =
authenticated challenge-
based measurement of its own
PMEM (via some cryptographic
integrity-ensuring function)

Verifier Prover

Why is a secret required for this interrogation?
As in any interrogation: the guilty party might lie!

Remote Attestation (RA)
• How to securely store and use secret keys in compromised devices?

113

Remote Attestation (RA)
• How to securely store and use secret keys in compromised devices?

114

Option 1: Hybrid RA
Small modifications to this
architecture’s hardware & software to
support secure computation on secrets

Tricky, but possible…

Remote Attestation (RA)

115

Option 1: Hybrid RA
Small modifications to this
architecture’s hardware & software to
support secure computation on secrets

Tricky, but possible…

Option 2: Hardware-based RA
A separate purpose-specific
cryptographic co-processor to store
(and compute on) secrets. e.g.,
Trusted Platform Module (TPM).

• How to securely store and use RA keys in compromised devices?

Remote Attestation (RA)

116

Option 1: Hybrid RA
Small modifications to this
architecture’s hardware & software to
support secure computation on secrets

Tricky, but possible…

Option 2: Hardware-based RA
A separate purpose-specific
cryptographic co-processor to store
(and compute on) secrets. e.g.,
Trusted Platform Module (TPM).

This is how high-end computers do it!
But too costly for MCUs…
One TPM costs a lot more than a
typical MCU.

• How to securely store and use RA keys in compromised devices?

Remote Attestation (RA)
• Two ways to implement a secure RA RoT:

117

Option 1: Hybrid RA
Small modifications to this
architecture’s hardware & software to
support secure computation on secrets

Tricky, but possible…

Best fit for resource-constrained MCUs…

Option 2: Hardware-based RA
A separate purpose-specific
cryptographic co-processor to store
(and compute on) secrets. e.g.,
Trusted Platform Module (TPM).

This is how high-end computers do it!
But too costly for MCUs…
One TPM costs a lot more than a
typical MCU.

IoT Remote Attestation Architectures
(Designing an affordable RA RoTs for resource-constrained MCUs)

118

[NDSS’12] SMART: Secure and Minimal Architecture for (Establishing Dynamic) Root
of Trust.
[USENIX’13] Sancus: Low-cost trustworthy extensible networked devices with a
zero-software trusted computing base.
[USENIX’19] VRASED: A verified hardware/software co-design for remote
attestation.
[CCS’21] On the TOCTOU problem in remote attestation.

VRASED Hybrid RA Architecture

• VRASED: real RA implementation
• Verilog Hardware Description

Language (HDL)
• Synthesized on the Basys 3 Field-

Programable Gate Array (FPGA)
• On top of the OpenMSP430 MCU
• Formally Verified

• Open-source:
• https://github.com/sprout-uci/vrased

Secure Remote Attestation

Sub-Property
2

Sub-Property
1

Sub-Property
N

HW HW SW

1) Define end-to-end secure RA
property

2) Break it down into multiple
sub-properties

3) Prove that sub-properties
together imply end-to-end
security

4) Implement VRASED HW/SW
5) Prove that each hw/sw

module satisfies each sub-
property

Based on (1-5), VRASED
implementation is secure

VRASED Implementation

LTL &
Model
Checking

LTL &
Model
Checking

F*- HACL*
(Hoare logic)

Theorem
Prover &
Crypto
Reduction

120

Verifying Hybrid RA

See VRASED paper for details!

121

RA-based Security Services for IoT

Remote
Attestation Software Updates

Proofs of Software
Execution

Proving absence of run-
time exploits (control-flow
and data-flow attestation)
during software execution

Proofs of Memory
Erasure (privacy)

Correct Device
Initialization/Boot

Malware
detection

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	ABOUT RIT
	ABOUT ROCHESTER
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Parte 3: ��Um pouco sobre a minha pesquisa��IoT Device Security
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	IoT & MCU Security�(why bother?)
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	MCU Computational Resources�(The amoebas of the computing world)
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Software Integrity in IoT Devices
	The Most Fundamental Question
	The Most Fundamental Question
	Threat Model
	Threat Model
	Threat Model
	Threat Model
	Threat Model
	Secure Boot
	Secure Boot
	Secure Boot
	Secure Boot (history)��[IEEE S&P (Oakland) 1997]
	Secure Boot ++
	Secure Boot ++
	Secure Boot ++
	Secure Boot ++
	Secure Boot ++
	Secure Boot ++
	Remote Software Updates
	MCU Software Integrity:�Prevention vs. Detection
	MCU Software Integrity:�Prevention vs. Detection
	Detection of Illegal IoT Code Modifications �and�Remote Attestation
	Remote Attestation (RA)
	Remote Attestation (RA)
	Remote Attestation (RA)
	Remote Attestation (RA)
	Remote Attestation (RA)
	Remote Attestation (RA)
	Remote Attestation (RA)
	Remote Attestation (RA)
	Remote Attestation (RA)�
	Remote Attestation (RA)�
	Remote Attestation (RA)�
	Remote Attestation (RA)�
	Remote Attestation (RA)�
	IoT Remote Attestation Architectures�(Designing an affordable RA RoTs for resource-constrained MCUs)
	Slide Number 119
	Slide Number 120
	Slide Number 121

