Name: ROBERTA NUNES MATTOS

Publication date: 28/08/2012
Advisor:

Namesort descending Role
ISAAC PINHEIRO DOS SANTOS Advisor *
LUCIA CATABRIGA Co-advisor *

Examining board:

Namesort descending Role
ISAAC PINHEIRO DOS SANTOS Advisor *
LUCIA CATABRIGA Co advisor *

Summary: This work presents an implementation of the finite element method to solve the system of two-dimensional compressible Euler equations in conservation variables, using the Dynamic Diffusion subgrid stabilization method, considering static and transient subgrid scales. This method is based on the multiscale formalism and has been proposed to solve convection-dominant transport problems. A nonlinear dissipative operator acting isotropically in all discretization scales is added to the Galerkin method. We let the
subgrid scales very in time, and thus they need to be tracked. Then, we propose a closed-form expression for them at each time step. A second order implicit predictor multicorrector scheme is used for time integration and the linear systems resulting are solved by the GMRES iterative method. We consider a set of classic experiments: normal shock, oblique shock and reflected shock. Numerical experiments shown that the method Diffusion Dynamics - with transient subgrid scales - results in more accurate solutions
than the stabilized methods SUPG/CAU e SUPG/YZβ.

Access to document

Acesso à informação
Transparência Pública

© 2013 Universidade Federal do Espírito Santo. Todos os direitos reservados.
Av. Fernando Ferrari, 514 - Goiabeiras, Vitória - ES | CEP 29075-910